Stuck on Social Media: Predicting Young Adults’ Intentions to Limit Social Media Use


  • Nicholas T Boehm Colorado State University


social media intensity, theory of planned behavior, social media limiting, Facebook, Instagram, Snapchat


Concerns of social media overuse warrant examinations of factors influencing the use of these technologies. While studies have characterized people’s adoption and use of social media, few have examined factors that would drive individuals to limit their use. This study uses an extended theory of planned behavior to predict intentions to limit social media use. A survey of 216 college students asked participants to report their intensity of Facebook, Instagram, and Snapchat use, as well as attitudes, social norms, and perceived behavioral control on intentions to limit social media use. Findings indicate that the standard theory of planned behavior constructs successfully predicted participants intentions to limit social media use, while intensity of use was mediated by social norms. The study suggests that participants’ emotional connectedness toward social media is an antecedent of certain variables, such as perceived social norms, which in turn predicts their intent to limit use of these media.  


Alhabash, S., & Ma, M. (2017). A tale of four platforms: Motivations and uses of Facebook, Twitter, Instagram, and Snapchat among college students?. Social Media+ Society, 3(1), 2056305117691544.

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. doi:10.1016/0749-5978(91)90020-T

Ajzen, I. (2013). Theory of planned behaviour questionnaire. Measurement Instrument Database for the Social Sciences. Retrieved from

Andreassen, C.S., & Pallesen, S.S., (2014). Social network site addiction – an overview. Current Pharmaceutical Design, 20(25), 4053-61. doi:10.2174/13816128113199990616

Andreassen, C. S., Torsheim, T., Brunborg, G. S., & Pallesen, S. (2012). Development of a Facebook addiction scale. Psychological reports, 110(2), 501-517.

Armitage, C. J., & Conner, M. (2001). Efficacy of the theory of planned behaviour: A meta-analytic review. British Journal of Social Psychology, 40(4), 471-499. doi:10.1348/014466601164939

Baker, R. K., & White, K. M. (2010). Predicting adolescents’ use of social networking sites from an extended theory of planned behaviour perspective. Computers in Human Behavior, 26(6), 1591-1597. doi:10.1016/j.chb.2010.06.006

Baumer, E. P., Guha, S., Quan, E., Mimno, D., & Gay, G. K. (2015). Missing photos, suffering withdrawal, or finding freedom? How experiences of social media non-use influence the likelihood of reversion. Social Media+ Society, 1(2), 2056305115614851.

Duggan, M. (2015). The demographics of social media users. Pew Research Center. Retrieved from

Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook 'friends:' Social capital and college students' use of online social network sites. Journal of Computer-Mediated Communication, 12(4), 1143-1168. doi:10.1111/j.1083-6101.2007.00367.

Granovetter, M. S. (1982). The strength of weak ties: A network theory revisited. In P. V. Mardsen & N. Lin (Eds.), Social Structure and Network Analysis (pp. 105–130). Thousand Oaks, CA: Sage Publications.

Ho, S.T., Lwin, M. O., & Lee, E. W. (2017). Till logout do us part? Comparison of factors predicting excessive social network sites use and addiction between Singaporean adolescents and adults. Computers in Human Behavior, 75, 632-642. doi: 10.1016/j.chb.2017.06.002

Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business horizons, 53(1), 59-68. doi:10.1016/j.bushor.2009.09.003

Koc, M., & Gulyagci, S. (2013). Facebook addiction among Turkish college students: The role of psychological health, demographic, and usage characteristics. Cyberpsychology, Behavior, and Social Networking, 16(4), 279-284. doi:10.1089/cyber.2012.0249

Kross, E., Verduyn, P., Demiralp, E., Park, J., Lee, D. S., Lin, N., ... & Ybarra, O. (2013). Facebook use predicts declines in subjective well-being in young adults. PloS one, 8(8), e69841. doi:10.1371/journal.pone.0069841

Kwon, M. W., D’Angelo, J., & McLeod, D. M. (2013). Facebook use and social capital: To bond, to bridge, or to escape. Bulletin of Science, Technology & Society, 33(1-2), 35-43. doi:10.1177/0270467613496767

Lee, E., Lee, J. A., Moon, J. H., & Sung, Y. (2015). Pictures speak louder than words: Motivations for using Instagram. Cyberpsychology, Behavior, and Social Networking, 18(9), 552-556. doi:10.1089/cyber.2015.0157

Lee, A. R., Son, S. M., & Kim, K. K. (2016). Information and communication technology overload and social networking service fatigue: A stress perspective. Computers in Human Behavior, 55, 51-61.

Luqman, A. A., Cao, X. C., Ali, A. A., Masood, A. A., & Yu, L. l. (2017). Empirical investigation of Facebook discontinues usage intentions based on SOR paradigm. Computers in Human Behavior, 70, 544-555. doi:10.1016/j.chb.2017.01.020

Mander, J. (2016). Social summary: GlobalWebIndex’s quarterly report on the latest trends in social networking. Trendstream. Retrieved from

Masur, P. K., Reinecke, L., Ziegele, M., & Quiring, O. (2014). The interplay of intrinsic need satisfaction and Facebook specific motives in explaining addictive behavior on Facebook. Computers in Human Behavior, 39, 376-386. doi:10.1016/j.chb.2014.05.047

Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. The MIT Press.

Orosz, G., Tóth-Király, I., & Bőthe, B. (2016). Four facets of Facebook intensity — The development of the Multidimensional Facebook Intensity Scale. Personality and Individual Differences, 10, 95-104.

Papacharissi, Z., & Mendelson, A. (2011). Toward a new(er) sociability: Uses, gratifications and social capital on Facebook. In: S. Papathanassopoulos., (Ed.), Media perspectives for the 21st century (pp. 212–230). Oxon, UK: Routledge.

Pelling, E. L., & White, K. M. (2009). The theory of planned behavior applied to young people's use of social networking Web sites. Cyberpsychology & Behavior: The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 12(6), 755-759. doi:10.1089/cpb.2009.0109

Quan-Haase, A., & Young, A. L. (2010). Uses and gratifications of social media: A comparison of Facebook and instant messaging. Bulletin of Science, Technology & Society, 30(5), 350-361. doi:10.1177/0270467610380009

Ragu-Nathan, T. S., Tarafdar, M., Ragu-Nathan, B. S., & Tu, Q. (2008). The consequences of technostress for end users in organizations: Conceptual development and empirical validation. Information Systems Research, 19(4), 417-433.

Ravindran, T., Yeow Kuan, A. C., & Hoe Lian, D. G. (2014). Antecedents and effects of social network fatigue. Journal of the Association for Information Science and Technology, 65(11), 2306-2320. doi:10.1002/asi.23122

Sagioglou, C., & Greitemeyer, T. (2014). Facebook’s emotional consequences: Why Facebook causes a decrease in mood and why people still use it. Computers in Human Behavior, 35, 359-363. doi:10.1016/j.chb.2014.03.003

Sheldon, P., & Bryant, K. (2016). Instagram: Motives for its use and relationship to narcissism and contextual age. Computers in human Behavior, 58, 89-97. doi:10.1016/j.chb.2015.12.059

Smith, A., & Anderson, M. (2018). Social Media Use in 2018. Pew Research Center. Retrieved from

Tian, Y., & Robinson, J. D. (2017). Predictors of cell phone use in distracted driving: Extending the Theory of Planned Behavior. Health Communication, 32(9), 1066-1075. doi:10.1080/10410236.2016.1196639

Tromholt, M. (2016). The Facebook experiment: Quitting Facebook leads to higher levels of well-being. Cyberpsychology, behavior, and social networking, 19(11), 661-666. doi:10.1089/cyber.2016.0259

van den Eijnden, R. J., Lemmens, J. S., & Valkenburg, P. M. (2016). The social media disorder scale. Computers in Human Behavior, 61, 478-487. doi:10.1016/j.chb.2016.03.038

Young, N. L., Kuss, D. J., Griffiths, M. D., & Howard, C. J. (2017). Passive Facebook use, Facebook addiction, and associations with escapism: An experimental vignette study. Computers in Human Behavior, 71, 24-31.